KBR Ammonia Technologies Improve Production Cost, Reliability, and Efficiency

Akhil Nahar, Vikram Singh – GPCA, Bahrain 2017
Agenda

– Introduction

– KBR Technologies Overview
 ▪ KRES™ TECHNOLOGY
 ▪ KBR’s TRUE COLD WALL ADD-ON AMMONIA CONVERTER

– Case Studies
 ▪ CASE STUDY FOR KRES™ TECHNOLOGY
 ▪ CASE STUDY FOR ADD-ON AMMONIA CONVERTER

– Conclusion
Present market context - need for reduction in NG consumption

- High price & reduced supply of natural gas
- New ammonia plants in countries with low cost natural gas and lower energy consumption

Existing plants have to stay competitive by:
- Expanding capacity – revamping of existing assets
- Improving energy efficiency
- Reducing dependence on natural gas
Revamp Strategy - Owner’s Dilemma

- Use of proven technology, update flow sheet
- Conventional methods sometimes don’t provide value for money
- Piece meal approach NOT providing full lifecycle cost benefit
- Revamp project goals (?)
 - Capacity increase: 20-25%
 - Steep energy saving > 0.5 G Cal/T
- What about customized solution for any type of flow-sheet?
 - Available for all existing technology plants
 - Proven and viable with documented commercial examples
 - Guaranteed ISBL plant performance
Do You Wish to..?

- Increase plant capacity
- Reduce plant energy consumption
- Reduce NG consumption of plant
- Reduce steam export from ammonia ISBL
- Move to alternative energy source e.g. coal available?
- Improve plant reliability
- Reduce Operating cost by using low cost energy alternative

✓ KBR HAS A SOLUTION !!!
Agenda

– Introduction

– KBR Technologies Overview
 ▪ KRES™ TECHNOLOGY
 ▪ KBR’s TRUE COLD WALL ADD-ON AMMONIA CONVERTER

– Case Studies
 ▪ CASE STUDY FOR KRES™ TECHNOLOGY
 ▪ CASE STUDY FOR ADD-ON AMMONIA CONVERTER

– Conclusion
KBR
Reforming
Exchanger
System
Case History: Reforming capacity increase by KRES™

Reforming Exchanger upstream WHB: 30%+ more Syngas

Air + Steam → Mixed Feed → Primary Reformer → Secondary Reformer → To Heat Recovery

~ ~
KBR Reforming Exchanger

- Simple, compact, robust design
- Tubes packed with reforming catalyst
- Single tube sheet at the top
- Each tube free to expand
- Removable tube bundle
- Dual-layer refractory lined shell
- External water jacket
- Very reliable
KRES™ Heat Curve

- Heat used for reforming
- Heat used for steam generation

Temperature, °C
- Sec. Reformer Outlet
- HP Steam

Process Gas

Heat Curve Diagram
KRES™ Technology salient features

- Operating experience only with KBR
- KBR’s propriety and patented technology
- Debottleneck front end reforming capacity by 30%
- Improvement in Furnace efficiency
- Milder operating conditions for RG WHB
- No modification in steam system for revamped capacity
- Robust design
- KBR’s responsibility from design to commissioning
Benefits of KRES-based Revamps

- KRES increases reforming capacity by 25-30% or alternatively for same capacity, reduces the usage of expensive natural gas
- Expensive furnace modifications avoided
- Better use of high grade heat
- Reduces overall furnace emissions
- Parallel installation reduces pressure drop
- KRES can be installed while plant is in operation and tie-ins completed in short turnaround
- Reduces severity/constraints in waste heat boiler
- Lost steam production can be replaced using cheaper, alternative energy sources or by other efficiency improvements
<table>
<thead>
<tr>
<th>CLIENT</th>
<th>LOCATION</th>
<th>YEAR</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanex</td>
<td>Canada</td>
<td>1994</td>
<td>revamp</td>
</tr>
<tr>
<td>Liaohe</td>
<td>China</td>
<td>2003</td>
<td>revamp</td>
</tr>
<tr>
<td>Chambal #1</td>
<td>India</td>
<td>2009</td>
<td>revamp</td>
</tr>
<tr>
<td>PCS Nitrogen Lima</td>
<td>USA</td>
<td>2015</td>
<td>revamp</td>
</tr>
<tr>
<td>PAU</td>
<td>Indonesia</td>
<td>2018</td>
<td>Grass-root/Fabrication in progress</td>
</tr>
<tr>
<td>PCPL</td>
<td>India</td>
<td>2019</td>
<td>Grass-root/KRES fabricated</td>
</tr>
<tr>
<td>Confidential</td>
<td>Russia</td>
<td>2019</td>
<td>revamp</td>
</tr>
</tbody>
</table>
Agenda

– Introduction

– KBR Technologies Overview
  KRES™ TECHNOLOGY
  KBR’s TRUE COLD WALL ADD-ON AMMONIA CONVERTER

– Case Studies
  CASE STUDY FOR KRES™ TECHNOLOGY
  CASE STUDY FOR ADD-ON AMMONIA CONVERTER

– Conclusion
TRUE Cold Wall Add-on Converter

- Added in series to boost conversion
- Proven vintage MWK design, cold sweep gas, like “Slim-Jim” of 1960s
- Cold wall 150+ still in use, 30-50 yrs
- Patented annulus flow feature
- Revamp for capacity gain, energy saving or reliability
- Replace hot wall converters
- Low cost/multiple vendors
- Cold wall (vs hot wall) provides higher reliability
- Catalyst use/conversion: Overall life cycle better due to ability to run the bed hotter
COLD WALL ADD-ON CONVERTER BENEFITS

• Higher optimum bed inlet T for add-on converter due to NH$_3$%, cold wall technology better fit, reliable, cost effective

• Bed inlet temperature control, startup connection- existing heater

• Cooler shell allows multiwall shell, more vendor options, faster delivery, no startup restrictions
Typical Flowsheet with Add-On Converter

LOW TEMP GAS SUITABLE AS SWEEP GAS
<table>
<thead>
<tr>
<th>Customer</th>
<th>Capacity NH3</th>
<th>Commissioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFCL Ammonia I</td>
<td>1800 MTPD</td>
<td>2016</td>
</tr>
<tr>
<td>CFCL Ammonia II</td>
<td>1750 MTPD</td>
<td>2017</td>
</tr>
<tr>
<td>Confidential</td>
<td></td>
<td>In progress</td>
</tr>
<tr>
<td>* Allied Chemicals (PCS Nitrogen)</td>
<td>1000 STPD</td>
<td>1967</td>
</tr>
<tr>
<td>* Agrico Chemicals (Mosaic)</td>
<td>1000 STPD</td>
<td>1967</td>
</tr>
<tr>
<td>* Comm/Solvents</td>
<td>970 STPD</td>
<td>1967</td>
</tr>
<tr>
<td>* Allied Chemicals</td>
<td>1000 STPD</td>
<td>1968</td>
</tr>
<tr>
<td>* Union Explosives</td>
<td>992 STPD</td>
<td>1969</td>
</tr>
</tbody>
</table>
Agenda

– Introduction

– KBR Technologies Overview
 - KRES™ TECHNOLOGY
 - KBR’s TRUE COLD WALL ADD-ON AMMONIA CONVERTER

– Case Studies
 - CASE STUDY FOR KRES™ TECHNOLOGY
 - CASE STUDY FOR ADD-ON AMMONIA CONVERTER

– Conclusion
Case study: KRES™ Technology

Facility Description
- Plant location - Lima, Ohio, USA
- Constructed in 1971
- Ammonia technology/EPC - Bechtel
- Reformer design - Foster Wheeler
- Original capacity - 1360 MTPD (1500 STPD)
- Capacity prior to revamp - 1678 MTPD (1850 STPD)
- Target capacity of revamp - 1955 MTPD (2150 STPD)
Case study for KRES™ Technology

Why KRES (KBR Reforming Exchanger System) for Revamps?

- Minimal modification for primary reformer
- Minimal impact on reformed gas waste heat boiler
- Previous successful installations:
 - Methanex, Canada, 1994
 - Liaohe, China, 2003
 - Chambal Fertilizer and Chemicals, India, 2009
 - Lima, Ohio, USA, 2015
- KRES Island supported by KBR throughout all phases, from conceptual study to startup
Case study for KRES™ Technology

Study Phase

- PCS evaluated options & selected KRES for study phase
- Study began in May 2012
- Confirmed the benefit of KRES technology in this revamp
- Preliminary constructability study & review
- Preliminary equipment arrangement including new secondary reformer
Engineering Phase
- Began in August 2012
- Process simulations finalized
- Confirmed equipment and piping arrangement
- P&IDs completed
- HAZOP performed
- Equipment requisition produced for secondary reformer and transfer lines
- Structural design completed
- Constructability review completed
- Model review completed
- Coordination of three engineering contractors

Case study for KRES™ Technology
Case study for KRES™ Technology

Construction

- **2014**
 - Installed foundations for new Secondary Reformer and KRES Exchanger - August
 - Erected new Secondary Reformer and KRES Exchanger in the operating plant - December

- **2015**
 - Install castable refractory and dome brick in the new Secondary Reformer – July/August
 - Loaded KRES catalyst - July
 - Demolished old Secondary Reformer, transfer piping, and process air line - August*
 - Install new transfer line, process air line, mixed feed line, and primary steam coil piping - August*
 - Loaded Secondary Reformer catalyst – August*
 - Installed KRES bundle - August*

(*) 6 week plant outage
Case study for KRES™ Technology

Construction Benefits

- KBR Construction and Installation Plan
- KBR Construction Quality Checklist
- KBR onsite personnel to support construction contractors
- Significant efforts to plan all crane lifts resulted in zero incidents or injuries for extremely complex lifts
- Constructability and 3D model reviews aided construction by designing in lift-points
Case study for KRES™ Technology
Commissioning, Start-up, Performance Test

♦ Commissioning and start-up began in October 2015
♦ Daily operations meetings
♦ Punch lists used
♦ KRES start-up was smooth and trouble-free
♦ Performance test was performed in March 2016
♦ No performance issues - all guarantees were met
♦ Performance test run – 2090 MTPD (2300 STPD) ammonia capacity not limited by KRES
♦ Quality of reformed syngas on spec, CH4 slip and steam import within limits
Case Study: Add-on Converter revamp at CFCL

<table>
<thead>
<tr>
<th></th>
<th>Before revamp</th>
<th>After revamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia Production</td>
<td>MTPD</td>
<td>1604</td>
</tr>
<tr>
<td>Synthesis Pressure</td>
<td>Kg/cm²g</td>
<td>208</td>
</tr>
<tr>
<td>NH₃ exit converter</td>
<td>mol%</td>
<td>19.6</td>
</tr>
</tbody>
</table>

- Non-KBR Technology plant
- High per pass conversion despite ~ 30 Kg/cm²g lower loop pressure
- No change in catalyst for existing converter
- Power for Syn and Refrigeration compressor reduced
- Steam requirements for turbines reduced
<table>
<thead>
<tr>
<th>Client</th>
<th>Location</th>
<th>Type</th>
<th>Description</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>Togliatti Azot</td>
<td>Russia</td>
<td>KRES + PGRL</td>
<td>Capacity & Energy</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Qafco</td>
<td>Qatar</td>
<td>KRES</td>
<td>Capacity & Energy</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Fertial</td>
<td>Algeria</td>
<td>Conventional</td>
<td>Capacity & Energy</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Fatima</td>
<td>Pakistan</td>
<td>Purifier</td>
<td>Capacity & Energy</td>
<td>2015</td>
</tr>
<tr>
<td>Yara - YPFL</td>
<td>Australia</td>
<td>Purifier</td>
<td>Converter Basket</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Petrokemija</td>
<td>Croatia</td>
<td>HPCS</td>
<td>Environmental</td>
<td>Ongoing</td>
</tr>
<tr>
<td>PCS Geismar</td>
<td>USA</td>
<td>KRES</td>
<td>Capacity & Energy</td>
<td>Ongoing</td>
</tr>
<tr>
<td>SAFCO-III</td>
<td>KSA</td>
<td>Purifier</td>
<td>Capacity & Energy</td>
<td>Ongoing</td>
</tr>
<tr>
<td>PEMEX</td>
<td>Mexico</td>
<td>Conventional</td>
<td>Capacity & Energy</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Nitrogenmuvek</td>
<td>Hungary</td>
<td>KRES + PGRL</td>
<td>Capacity & Energy</td>
<td>Ongoing</td>
</tr>
<tr>
<td>SAFCO-IBB</td>
<td>KSA</td>
<td>Conventional</td>
<td>Converter Basket</td>
<td>2015</td>
</tr>
<tr>
<td>PCS N2, Lima</td>
<td>Ohio, USA</td>
<td>KRES</td>
<td>Capacity</td>
<td>2015</td>
</tr>
<tr>
<td>Agrium, Borger</td>
<td>USA</td>
<td>Conventional</td>
<td>Capacity & Energy</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Zuari, Goa</td>
<td>India</td>
<td>Conventional</td>
<td>Capacity & Energy</td>
<td>Ongoing</td>
</tr>
</tbody>
</table>
Recent revamp projects

<table>
<thead>
<tr>
<th>Client</th>
<th>Location</th>
<th>Type</th>
<th>Description</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Global</td>
<td>Iraq</td>
<td>Conventional</td>
<td>Capacity</td>
<td>Delayed</td>
</tr>
<tr>
<td>SABIC</td>
<td>KSA</td>
<td>Conventional</td>
<td>Energy</td>
<td>Ongoing</td>
</tr>
<tr>
<td>CNC</td>
<td>Trinidad</td>
<td>Conventional</td>
<td>Capacity</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Huajin</td>
<td>China</td>
<td>Conventional</td>
<td>Cap. & Energy</td>
<td>2014</td>
</tr>
<tr>
<td>NFL</td>
<td>India</td>
<td>HP Reformer + Purifier</td>
<td>Feedstock</td>
<td>2014</td>
</tr>
<tr>
<td>Neochim</td>
<td>Bulgaria</td>
<td>Conventional</td>
<td>Capacity</td>
<td>2012</td>
</tr>
<tr>
<td>Kribhco #1,#2</td>
<td>India</td>
<td>Purifier</td>
<td>Cap. & Energy</td>
<td>2012</td>
</tr>
<tr>
<td>Al Bayroni</td>
<td>KSA</td>
<td>Conventional</td>
<td>Energy</td>
<td>2010</td>
</tr>
<tr>
<td>Zuari</td>
<td>India</td>
<td>Conventional</td>
<td>Cap. & Feed</td>
<td>2011</td>
</tr>
<tr>
<td>Chambal #1</td>
<td>India</td>
<td>KRES + Add-on</td>
<td>Cap. & Energy</td>
<td>2009/2016</td>
</tr>
<tr>
<td>Chambal #2</td>
<td>India</td>
<td>KRES + Add-on</td>
<td>Cap. & Energy</td>
<td>2009/2017</td>
</tr>
<tr>
<td>Daqing</td>
<td>China</td>
<td>Conventional</td>
<td>Capacity</td>
<td>2006</td>
</tr>
<tr>
<td>Lutianhua</td>
<td>China</td>
<td>Conventional</td>
<td>Cap. & Energy</td>
<td>2005</td>
</tr>
</tbody>
</table>
Agenda

– Introduction

– KBR Technologies Overview
 ▪ KRES™ TECHNOLOGY
 ▪ KBR’s PURIFIER™ TECHNOLOGY
 ▪ KBR’s HIGH PRESSURE REFORMING
 ▪ KBR’s TRUE COLD WALL ADD-ON AMMONIA CONVERTER

– Case Studies
 ▪ CASE STUDY FOR KRES™ TECHNOLOGY
 ▪ CASE STUDY FOR ADD-ON AMMONIA CONVERTER

– Conclusion
Conclusion

- There’s often a strong business case for revamp
 - Lack of economy of scale
 - High operating costs
 - Aging equipment / older technology / unreliable equipment due to increased load

- KBR is a pioneer in revamping existing ammonia plants for over 50 years

- KBR technology revamps improve reliability and operability

- Results in higher returns to plant owners

- KBR has solution for any client requirement
THANK YOU